Note on Dual Symmetric Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on a Conjecture Concerning Symmetric Resilient Functions

In 1985, Chor et al 2] conjectured that the only 1-resilient symmetric functions are the exclusive-or of all n variables and its negation. In this note the existence of symmetric resilient functions is shown to be equivalent to the existence of a solution to a simultaneous subset sum problem. Then, using arithmetic properties of certain binomial coeecients, an innnite class of counterexamples t...

متن کامل

On Circularly Symmetric Functions

1. In addition to the study devoted to the general class of normalized regular univalent functions in the unit circle considerable attention has been given to certain subclasses of these functions such as starlike functions, convex functions, and others. In view of the important role played by symmetrization methods in recent work it seems worth while to study a further subclass—the class of ci...

متن کامل

On circularly symmetric functions

Let D ⊂ C and 0 ∈ D. A set D is circularly symmetric if for each % ∈ R a set D ∩ {ζ ∈ C : |ζ| = %} is one of three forms: an empty set, a whole circle, a curve symmetric with respect to the real axis containing %. A function f ∈ A is circularly symmetric if f(∆) is a circularly symmetric set. The class of all such functions we denote by X. The above definitions were given by Jenkins in [2]. In ...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

A note on quasi-symmetric designs

A quasi-symmetric design is a (v, k, λ) design with two intersection numbers x, y where 0 ≤ x < y < k. We show that for fixed x, y, λ with x > 1, λ > 1, y = λ and λ (4xy + ((y − x) − 2x− 2y + 1)λ) a perfect square of a positive integer, there exist finitely many quasi-symmetric designs. We rule out the possibilities of quasi-symmetric designs corresponding to y = x + 3 and (λ, x) = (9, 2), (8, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1931

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500007719